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The high-energy behavior of the scattering amplitude is investigated in the real negative region of momen
tum transfers —/, for t below the threshold t=4m2 of the crossed channel. If one assumes the existence of 
bound states in the crossed t channel with angular momenta larger than one, one can show that the high-
energy scattering amplitude behaves as if dominated by a Regge trajectory a (t) of even signature and the 
quantum numbers of the vacuum. It is shown that a (t) is continuous in the open interval (0,4m2), and an 
upper bound for a(t) is given under the assumption of analyticity in the domain Retll2<2m. 

1. INTRODUCTION 

IT is known that the Froissart bound1 for the rela-
tivistic scattering amplitude F(s,t) can be deduced 

from analyticity in the Lehmann ellipse plus the weak 
assumptions that the absorptive part oiF(s7t) is analytic 
in t in the neighborhood of some finite positive interval 
(0,£0) and is bounded there by a power of s2tS It has now 
also been proved,4 by using, in addition, analyticity in 
the s plane, that if F(s,t) has no poles in t corresponding 
to bound states with angular momentum larger than 
one in the interval (0,4m2) the dispersion integrals are 
actually convergent with only two subtractions. We 
shall discuss here the asymptotic behavior of F(s}t) 
assuming the existence of poles with angular momentum 
larger than one. Although no elementary bosons exist 
with spin higher than one, this analysis has interest in 
itself as it discloses a connection between the high-energy 
behavior of the scattering amplitude and the angular 
momenta of the assumed bound states according to the 
pattern of a leading Regge trajectory a(i) of even 
signature and the quantum numbers of the vacuum. It 
is shown that a{t) is continuous in the open interval 
(0,4m2). 

We have also obtained an upper bound for a(t), 
assuming analyticity inside the parabola Re\/t=2m. 
This parabola is the limit as k2-^<x>, of the ellipse of 
convergence of the Legendre polynomial expansion. 

2. BOUND STATES AND HIGH ENERGY BEHAVIOR 

Let F(s,uj) be the scattering amplitude describing 
three processes: 

I 
II 

III 

A+B -
A+B'-
A+A'-

-+A'+B'. 
•*A'+B, 
->B>+B, 

where A and B are two scalar particles of mass MA and 
MB, respectively. The first two processes are elastic 
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scattering and the last one is a collision in a state with 
the quantum numbers of the vacuum. The variables s, 
u, and / are related by 

s+t+u=2(MAi+MB2). (1) 

We assume as in Ref. 4 that F(s,u,t) is an analytic 
function of t in a certain domain 3D as required to derive 
the Froissart bound, is bounded by a power sN of s and, 
in addition, for fixed / inside 3D, it is an analytic function 
of s with cuts along s= (MA+MB)2 to + OO and 
u= (MA+MB)2 to + oo. The domain 2D includes a 
neighborhood of the positive real axis from 2=0 to 
t=4m2 with the exception of a finite number of points 
where F(s,t,u) has simple poles. Here m is the mass of 
the least massive particle, say the pion mass. One can 
show4 that given a positive e< l one can find a real 
/€>0 and independent of s such that for t<te, F(s,u,t) 
is bounded by s1+€. Therefore, for fixed t<t€, one can 
write a dispersion relation for F(s,t,u) with only two 
subtractions: 

F ( J I « , 0 = C 0 ( 0 + C I ( 0 ( ^ - « ) 

s2 r°° Ai(s',t) u2 r A2(u
f,t) 

+- / ds'+- / —du'. (2) 

The dispersion integrals may extend below the elastic 
threshold S0(UQ)= (MA+MB)2 but above this threshold 
each absorptive amplitude and all its derivatives with 
respect to t are positive definite, for t in the interval 
(0,4m2). Now for t in this interval, F(s,t,u) is bounded 
by sN so that one can write a dispersion relation with 
7V+1 subtractions: 

F(s,U,t)^C,{t) + C1{t)(s-u)+Y,(hn(t)s^hn{t)u-) 
m=2 

t2V+l c » A^s',1) 
-ds' 

N+1 r°° A2(u',t) 

ir J (u'—u)u' N+1 
(3) 

For K U comparison of (2) and (3) shows that Co(t) 
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and Ci(t) are the same in the two expressions and 

7m(0 = - / dsf, (4) 

with a similar expression for I2n{t). 
Now let us introduce the variable, 

Z=(S— U)/4:klk2 (5) 

where ki^it-iMA*)11*, h^{t-^MB
2)U2 are the 

initial and final momenta in the center-of-mass system 
for process III and 2=cos0, where 6 is the scattering 
angle. In the region we are considering both ki and k2 

are pure imaginary and the product is real and negative. 
One can express s and u in terms of z and / by 

2k1k2z=s+k1*+k2
2= - (u+h2+k2

2). (6) 

Therefore, since ki2 and k2
2 are negative in the expansion 

of sn or un in power series of z all the coefficients of even 
powers are positive. On the other hand, one can expand 
zv in Legendre polynomials of order l<p and (l—p) 
even. Again in this expansion all the coefficients are 
positive. Therefore, one can finally write 

£ (Iln(t)s»+I2n(t)u») = Z Cl{t)Pi(z) , (7 ) 
n=2 1=0 

where 

Cl(t)= £ »ln(t)\:hn(t)+(-iyiln(tn ( 8 ) 
n—l 

and for even /, all the inn are positive. (Actually the 
Mn's are all positive definite for both even and odd /.) 
In the real interval 0<£<4w2 the only singularities of 
F(s,u,t) as a function of / are poles corresponding to 
bound states in the crossed channel III. Let ti, t2, • • •, 
h be the energies of these bound states, h, l2y • • •, h 
the corresponding angular momenta. In the neighbor
hood of t=tr all the coefficients Ci(i) are regular except 
Cir(t), which has a pole at t—tr. It is then clear, by the 
result of Jin and Martin4 that the representation (2) 
is valid all through the interval 0< t<ti, where t\ is 
the first bound state with angular momentum larger 
than one. Since the residue at this pole behaves like 
\z\lx' and, at least in complex directions \F(s, t\— e)| 
< c | s |2 it follows that / / = 2. 

Let us next consider the sequence of bound states with 
increasing energies ti, t2, • •, tn

f and even angular 
momenta h', l2, • • •, ln' such that / / is larger than the 
angular momenta of all bound states preceding t/. Let 
us suppose that in the interval 0<t<t/ the representa
tion (3) is valid with iV=//— 1. Then by a slight generali
zation of the argument of Ref. 4 one can show that in the 
interval 0<t<ti+i the representation (3) is valid with 
iV=/ /+ l . We shall give the main steps in the proof. 

For t<t/, Ii,2n(t) is given by (4) when n>l/. Since 
Ait2(s

f,t) and all its derivatives with respect to / are 

positive (for s'>so) one can expand A(s',t) in power 
series of / with positive coefficients. It is then allowed 
to interchange the order of summation and integration 
in (4).5 One thus obtains a power-series representation 
for In(t) with positive coefficients. If f is the radius of 
convergence of this series then it is also the first singu
larity of In(t) and vice versa and for t<t' the integral 
representation still holds.5 Now since the coefficients 
/jLin(t) in (8) are all positive analytic functions of t then, 
for even / > / / , ti is also a singularity of Ci(t). Since by 
hypotheses, all Ci{t) with even 1>U are regular in the 
interval 0<t<ti+i, it follows that the representation 
(4) holds for n>l/+2 and therefore F(s,u,f) may be 
represented by (3) with N=l/+1. Thus our assertion is 
proved. Since this result is true in the interval 0<t<ti 
its validity in general follows by complete induction. 
Now using the same argument as before one deduces 
that: 

W = / / + 2 . (9) 

It may happen that in the interval (t/, ti±i) there exists 
a bound state t3- with angular momentum /,—Z/+1. 
Since for odd / the expression (8) involves the difference 
of the two functions Iin{t) and I2n(i) it is not in general 
true that for t<tj (3) holds with N=lj— 1. It is however 
obvious that, for t>tj, at least lj+1 subtractions are 
required. 

From the above considerations it is clear that if the 
angular momentum lj (even or odd) of a bound state tj 
is larger than all the preceding ones the angular mo
mentum of the next bound state with the same property 
is either lj+1, or lj+2 if lj is even. 

Another result which emerges from this analysis is 
that for all the bound states / / as previously defined, the 
residues are negative. In fact as one approaches the 
pole U from below, Ci/(t) will be given by (8) and is 
positive. Therefore the residue is negative. 

3. PROPERTIES OF «(*) 

Let us now define a function a(t) as the limiting value 
of the set of real numbers at- for which both integrals 

r™Alt2(s\t) 
Ii.2ai= dsf (10) 

J so •> 

are convergent.6 We shall first show that a(/) is continu
ous in the open interval (0,4w2). Let us take in the / 
plane three circles with origin at 2=0 and increasing 
radii /, t+8 and /o=4w2, respectively. These circles are 
inside the domain 3D of analyticity in t of A (s,t) and on 
each circle |i4(s,J)| is maximum on the positive real 
axis. Then applying to A (s,t), Hadamard's three circles 
theorem,7 one obtains 

A (s, t+d) <A (s,t)*A feo)*2, (11) 
5 E. C. Titchmarsh, The Theory of Functions (Oxford University 
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where 

u'-K^)/k(7> ^'"(T)/1^) (12) 

and ?i+?2=l. Since we are excluding the points 2=0 
and t=to one can take do<t<to—5o, where 8Q is arbi
trarily small. Then for d<80 one has: 

fa<5[* ln(/0//)]-1<2(V5o) • (13) 

But A(s,to) is bounded by (s/s0)
N, therefore (11) gives 

A(s,t+5)<A(s,t)(s/s0)<*, (14) 

where K= 2N/do. Therefore, given an e one can choose a 
di= e/n such that, for 5<min{6o,6i}, one has 

is bounded by one in the same region. Now the interior 
of the parabola is analytically mapped into the interior 
of the unit circle by the transformation8 

»A(s,t+5) 
-ds<$o~ 

A(s,t) 

oa(0+K(Si-5)+l 
< « . (15) 

Hence \a(t+d) — a(t)\ <e so that a(t) is continuous. If 
F(s,u,t) has a Regge behavior, a(t) coincides with the 
Pomeranchuk trajectory. However, even in the general 
sense as denned above a(t) has the properties of the 
Pomeranchuk trajectory in the interval (0,4m2), namely 
that, in the (l,t) plane the leading poles with even angu
lar momentum and quantum numbers of the vacuum 
lie on a(t) and all the others lie on or below this curve. 

Finally let us assume that A (s,t) is actually bounded 
by sa{t)+€ for whatever small e, and that a(t) is analytic 
inside the parabola: 

Re \ / /=vV=2w. (16) 

This parabola is the limit as J2 —> oo, of the ellipse of 
convergence of the Legendre polynomial expansion. 
Since in the Legendre polynomial expansion of A (s,t) 
all the coefficients are positive, for all / on or inside the 
parabola (10) Re a(t) has an absolute maximum at /= to. 
Then for A real and positive 

<p (t) = expX[o; (t)—a (/0)] 

z=tg 
L4W J ' 

(17) 

Therefore, one can apply Pick's inequality9 to the func
tion <p[t(z)~]. One obtains (for real positive t) 

e Xa(0<-
~l+zeX[a(0)-«('o)1 (18) 

In the limit X —» 0, (12) becomes 

a(0<«(0)+[22/(l+2)][a(/0)-a(0)] 

7r//y/2-
or 

a ( / ) < a ( / 0 ) - c o s r - Q ][a( /o)-a(0)] , (19) 

which is an upper bound for a{t) joining the values at 
t=0 and t=to. Considering that the absence of w—IT 
bound states imply a(to)<2 and since ce(0)<l, an 
absolute upper bound for the Pomeranchuk trajectory 
in the interval (0,4m2) is 

a(0 = 2 —cos 
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